
来源:早起Python
作者:陈熹
大家好,我是早起。
在之前的文章 批量翻译文档 中,我们介绍了如何调用百度翻译API完成实际的文档翻译需求。如果是科研、深度学习等需要经常阅读大量论文的工作,批量翻译就能大大提高效率。
本文将进一步使用 Python 实现另一个在科研学术领域的办公自动化应用。「结合爬虫批量翻译文献题目和摘要,并存储搜索和翻译结果至 Excel中」
完成效果如下,指定的外文文献标题、摘要都被批量翻译后存储在Excel中,我们可以大致浏览后有选择性的挑选文章阅读!
本文以ACM协会的文献为例,搜索的关键词是 “对抗生成网络+眼底” ,即 “GAN+fundus”
本文需求可以看做三块内容:爬虫+翻译+存储 在使用百度的通用翻译 API 之前需要完成以下工作:
“使用百度账号登录百度翻译开放平台(
http://api.fanyi.baidu.com)注册成为开发者,获得APPID;进行开发者认证(如仅需标准版可跳过);开通通用翻译API服务:开通链接参考技术文档和Demo编写代码”
完成后在个人页面在即可看到 ID 和密钥,这个很重要!
关于如何使用Python爬取翻译结果的细节本文就不再赘述!我已经将通用翻译 API 的 demo代码写好,已经对输出做简单修改,拿走就能用!
import requests import random import json from hashlib import md5 # Set your own appid/appkey. appid = 'xxx' appkey = 'xxx' # For list of language codes, please refer to `https://api.fanyi.baidu.com/doc/21` from_lang = 'en' to_lang = 'zh' endpoint = 'http://api.fanyi.baidu.com' path = '/api/trans/vip/translate' url = endpoint + path
query = 'Hello World! This is 1st paragraph.nThis is 2nd paragraph.' # Generate salt and sign def make_md5(s, encoding='utf-8'): return md5(s.encode(encoding)).hexdigest()
salt = random.randint(32768, 65536)
sign = make_md5(appid + query + str(salt) + appkey) # Build request headers = {'Content-Type': 'application/x-www-form-urlencoded'}
payload = {'appid': appid, 'q': query, 'from': from_lang, 'to': to_lang, 'salt': salt, 'sign': sign} # Send request r = requests.post(url, params=payload, headers=headers)
result = r.json() # Show response for res in result['trans_result']:
print(res['dst'])
在本需求中可以考虑将上面的API重新包装成函数,将爬取的题目和摘要看做两个文本输入函数后,返回翻译的结果:
import requests import random import json from hashlib import md5 def make_md5(s, encoding='utf-8'): return md5(s.encode(encoding)).hexdigest() def Baidu_translate(query): # Set your own appid/appkey. appid = 'xxx' appkey = 'xxx' from_lang = 'en' to_lang = 'zh' endpoint = 'http://api.fanyi.baidu.com' path = '/api/trans/vip/translate' url = endpoint + path
try:
salt = random.randint(32768, 65536)
sign = make_md5(appid + query + str(salt) + appkey)
# Build request headers_new = {'Content-Type': 'application/x-www-form-urlencoded'}
payload = {'appid': appid, 'q': query, 'from': from_lang, 'to': to_lang, 'salt': salt, 'sign': sign}
# Send request r = requests.post(url, params=payload, headers=headers_new)
result = r.json()['trans_result'][0]['dst']
return result
except:
return '翻译出错'
函数中用 try 捕获错误避免中途因为提交的文本为空,而导致的报错终止程序
存储部分,通过 openpyxl 或者 xlwings 存储到 Excel 中就可以
爬虫部分,两个网站的逻辑非常类似,具体见下文
首先爬取ACM的摘要,在首页搜索框中输入:GAN+fundus 跳转后可以发现,URL包含了关键词:
那么后面的搜索就可以直接用URL拼接:
keyword = 'GAN+fundus' url_init = r'https://dl.acm.org/action/doSearch?AllField=' url =url_init + keyword
搜索结果非常多,本文爬取第一页文章的摘要为例,后续读者当关键词锁定的文献比较少或者想获取全部文献,可以自行寻找URL翻页逻辑
同时我们发现,摘要显示不全,确认源代码和ajax动态加载不包含完整摘要,因此可以考虑进入各文献的详情页获取摘要:
回到搜索结果页,对详情页分析可以发现每个文献可获取的href跟 dl.acm.org 拼接后即为详情页URL:
接下来就可以利用Xpath获取搜索页第一页全部文献的 href 并拼接成新URL:
import requests from lxml import html
keyword = 'GAN+fundus' url_init = r'https://dl.acm.org/action/doSearch?AllField=' url =url_init + keyword
html_data = requests.get(url).text
selector = html.fromstring(html_data)
articles = selector.xpath('//*[@id="pb-page-content"]/div/main/div[1]/div/div[2]/div/ul/li') for article in articles:
url_new = 'https://dl.acm.org' + article.xpath('div[2]/div[2]/div/h5/span/a/@href')[0]
print(url_new)
获得新的URL之后,重新用Xpath解析新的网页获取题目和摘要:
for article in articles:
url_new = 'https://dl.acm.org' + article.xpath('div[2]/div[2]/div/h5/span/a/@href')[0]
html_data_new = requests.get(url_new).text
selector_new = html.fromstring(html_data_new)
title = selector_new.xpath('//*[@id="pb-page-content"]/div/main/div[2]/article/div[1]/div[2]/div/div[2]/h1/text()')[0]
abstract = selector_new.xpath('//div[@class="abstractSection abstractInFull"]/p/text()')[0]
print('Title: ' + title)
print('Abstract: ' + abstract)
print('-' * 20)
题目和摘要可以成功输出,但现在还是英文形式。只需要将文本提交给上文中包装好的翻译函数,输出返回值就是中文翻译形式了。注意免费的API每秒只允许调用一次,可以考虑将题目和摘要组合成一个文本同时提交,或者中间休眠一秒:
for article in articles:
url_new = 'https://dl.acm.org' + article.xpath('div[2]/div[2]/div/h5/span/a/@href')[0]
html_data_new = requests.get(url_new).text
selector_new = html.fromstring(html_data_new)
title = selector_new.xpath('//*[@id="pb-page-content"]/div/main/div[2]/article/div[1]/div[2]/div/div[2]/h1/text()')[0]
abstract = selector_new.xpath('//div[@class="abstractSection abstractInFull"]/p/text()')[0]
title = 'Title: ' + title
translated_title = Baidu_translate(title)
print(title)
print(translated_title)
time.sleep(1)
abstract = 'Abstract: ' + abstract translated_abstract = Baidu_translate(abstract)
print(abstract)
print(translated_abstract)
time.sleep(1)
print('-' * 20)
题目和摘要成功翻译!接下来可以自定义对接意向的持久化存储了,以openpyxl为例,首先在代码的开头用 openpyxl 创建 Excel 文件并写入表头:
from openpyxl import Workbook
wb = Workbook()
sheet = wb.active
header = ['序号', '题目', '题目(译)', '摘要', '摘要(译)']
sheet.append(header)
path = 'xxx' # 希望保存文件的路径
用变量 num 标记文章的顺序,并在每篇文章解析和翻译完后利用 sheet.append(list) 写入 Excel,循环结束后保存文件即完成全部存储:
num = 0 keyword = 'GAN+fundus' url_init = r'https://dl.acm.org/action/doSearch?AllField=' url =url_init + keyword
html_data = requests.get(url).text
selector = html.fromstring(html_data)
articles = selector.xpath('//*[@id="pb-page-content"]/div/main/div[1]/div/div[2]/div/ul/li') for article in articles:
num += 1 url_new = 'https://dl.acm.org' + article.xpath('div[2]/div[2]/div/h5/span/a/@href')[0]
html_data_new = requests.get(url_new).text
selector_new = html.fromstring(html_data_new)
title = selector_new.xpath('//*[@id="pb-page-content"]/div/main/div[2]/article/div[1]/div[2]/div/div[2]/h1/text()')[0]
abstract = selector_new.xpath('//div[@class="abstractSection abstractInFull"]/p/text()')[0]
title = 'Title: ' + title
translated_title = Baidu_translate(title)
print(title)
print(translated_title)
time.sleep(1)
abstract = 'Abstract: ' + abstract
translated_abstract = Baidu_translate(abstract)
print(abstract)
print(translated_abstract)
time.sleep(1)
print('-' * 20)
sheet.append([num, title, translated_title, abstract, translated_abstract])
wb.save(path + r'文献输出.xlsx')
最终实现效果如下,可以看到指定的文章标题、摘要都被翻译提取出来,我们可以大致浏览后有选择的查阅文章。
另外还有一个重要的计算机协会,IEEE(https://ieeexplore.ieee.org/Xplore/home.jsp),网页信息爬取逻辑和ACM非常类似,不再赘述
综合各种办公自动化技术,我们可以实现各式各样的办公或科研需求,扎实的技术是最重要的前提。
例如本文的需求,其实我们还可以通过 openpyxl 或者 xlwings 存储到 Excel 中,实际上还可以 python-docx 写入 Word 中,甚至从文献中获取图片,借助 python-pptx 写入 PPT 中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27