京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:【公众号】
Python技术
人脸识别是一个既方便又安全的个人鉴权解决方案,被应用在各个场景中,从各种app,打卡门禁,到遍布各处的自动售卖机,已经和我们的生活密切结合了,不过可别掉以轻心,安全问题无小事
1
今天看到的一条新闻[1] ,给人脸识别的安全问题打上了大大的问号,怎么回事呢?
近日上海警方在查处一起伪造发票案时,牵出了一个破解人脸识别案,犯罪嫌疑人通过简单的手段,获取了大量的人脸信息
然后利用“活照片” app,把获取到的照片做成可以点头、摇头、眨眼,张嘴的视频
再通过劫持手机摄像头软件,轻松骗过手机的人脸识别环节
从而攻破广泛用于管理电子营业执照 App 的人脸识别系统,疯狂的开设虚假发票
2
之前也有破解人脸识别的新闻,依托清华大学人工智能研究院成立的团队瑞莱智慧,披露过一个研究成果:
研究人员根据一张照片,通过研究算法,制作一副特殊“眼镜”,就可以刷脸解锁他人手机或App身份认证。
戴上自制眼镜后,15分钟内破解了19款智能手机的人脸识别解锁系统,同样被破解的还包括十余款金融和政务服务类App。
研究人员表示,结合身份证号等个人信息,甚至可冒充机主完成线上银行开户。
3
这些新闻只是“人脸识别”黑产中的冰山一角
记者发现,网上存在大量提供破解人脸识别技术服务的群组,通过各种技术,用很便宜的价格,为客户提供各种场景的人脸识别服务,比如上班打卡考勤,甚至可以通过特殊的手机,随便破解运行在手机上的人脸识别应用,而且价格低廉
看的这里,我都不敢再随便晒我的头像了
面对这样的情况,专家不断地呼吁各方提高安全意识,敦促相关部门提高安全等级,修补安全漏洞……
这些无可厚非,但对于我们每个个体来说,远水解不了近渴,我的得主动出击做我们能做的,保护自己
1.头像分享需谨慎
通过调查可知,大部分都是通过窃取互联网上的用户头像训练以及进行突破人脸识别的
那么我们在分享个人头像时,就要谨慎,对于公信力不高的平台,最好不要轻易上传头像或者有脸的照片
2.个人信息保护牢
另外为了提高安全等级,很多人脸识别系统会配合采集个人信息作为副助验证,增强一定的安全性
那么我们就不要随便将个人信息泄露出去,特别是姓名,手机号,身份证号,这些关键信息,至少不要一起提供到不靠谱的平台上
3.主动防御
除了这些主动的通过习惯防范的方式,还有什么方法吗?
当然有,所谓“魔高一尺道高一丈”,那么怎么为我们的头像戴上面具呢
Fawkes是由芝加哥大学 SANDLab 研究人员开发,针对面部识别系统的隐私保护工具
它可以通过 AI 计算,为照片添加一层防识别 “隐身衣”,经测试,其已在最先进的面部识别技术中取得了百分百的胜利。
我们先看一组照片:
找不同
能看出两种照片的不同吗?
如果不仔细看是看不出来,甚至就算仔细看了,也未必能看出来
上面的图片中,左边的是原始图片,右边的是经过 Fawkes 伪装过的
神奇的是,经过处理后,人眼几乎看不出差异,而在机器看来却是完全不同的两张脸
这是如何实现的呢?
借用 Fawkes 为照片穿上隐身衣这篇文章上的解释:
Fawkes 在公开的研究论文里,详细描述了实现原理,不过比较复杂,简单来说就是:
Fawkes 并不是让你的照片对人脸识别系统隐形,而是通过代码做了一些微调,让你看起来好像另一个人,这个人可能时不存在的虚拟人像
关于虚拟人像,可参考 99% 的人并不知道 AI 生成人脸已经达到什么水平[5]
Fawkes 原理示意图:
Fawkes 原理示意图
前者是基于 Fawkes 算法来生成用户图像的伪装版本,后者是通过追踪器(Tracker)从网络资源中检索伪装的图像,并使用它们来训练未经授权的面部识别模型。最终可以发现模型输出的图像与原始图像并不相同
这是官方给出的效果对比:
效果对比图
看着很热闹,如何应用呢?
Fawkes 提供了两种应用方式
第一种是桌面应用,提供了 MAC 和 Windows 的下的软件[6],下载后直接使用即可
而且使用起来简单粗暴:
Fawkes 软件
转化完后,会保存在原始图片所在的目录里
第二种,可以安装 Fawkes 命令行工具
首先需要有 Python3.6 及其以上版本
然后需要安装 TensorFlow 2.0 以上版本,具体安装方法可以参考 TensorFlow 安装
最后使用 pip 安装 Fawkes
pip install fawkes
如果安装成功,就可以直接使用命令 fawkes 了
命令行参数为:
示例
fawkes -d ./imgs --mode min
将当前目录 imgs 里的所有图片以最小保护力度进行批量处理
两种保护方式各有好处,可根据自己实际情况选择
虽然人脸识别还有待提高安全性,但办法总比问题多
我们在加强安全意识的同时,可以利用技术手段提高自我保护的力度
这才是真正有效的方式,也是让自己不断强大起来的方式
这下,妈妈再也不用担心我的头像安全问题了,就聊到这里吧,赶紧去换一下社交网络上的头像
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20