京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:【公众号】
Python技术
知乎上有许多关于颜值、身材的话题,有些话题的回复数甚至高达几百上千,拥有成千上万的关注者与被浏览数。如果我们在摸鱼的时候欣赏这些话题将花费大量的时间,可以用 Python 制作一个下载知乎回答图片的小脚本,将图片下载到本地。
首先打开 F12 控制台面板,看到照片的 URL 都是 https://pic4.zhimg.com/80/xxxx.jpg?source=xxx 这种格式的。
滚动知乎页面向下翻页,找到一个带 limit,offset 参数的 URL 请求。
检查 Response 面板中的内容是否包含了图片的 URL 地址,其中图片地址 URL 存在 data-original 属性中。
从上图可以看出图片的地址存放在 content 属性下的 data-original 属性中。
下面代码将获取图片的地址,并写入文件。
import re import requests import os import urllib.request import ssl from urllib.parse import urlsplit from os.path import basename import json
ssl._create_default_https_context = ssl._create_unverified_context
headers = {
'User-Agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
'Accept-Encoding': 'gzip, deflate' } def get_image_url(qid, title): answers_url = 'https://www.zhihu.com/api/v4/questions/'+str(qid)+'/answers?include=data%5B*%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action%2Cannotation_detail%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cattachment%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelevant_info%2Cquestion%2Cexcerpt%2Cis_labeled%2Cpaid_info%2Cpaid_info_content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_recognized%3Bdata%5B*%5D.mark_infos%5B*%5D.url%3Bdata%5B*%5D.author.follower_count%2Cbadge%5B*%5D.topics%3Bdata%5B*%5D.settings.table_of_content.enabled&offset={}&limit=10&sort_by=default&platform=desktop' offset = 0 session = requests.Session()
while True:
page = session.get(answers_url.format(offset), headers = headers)
json_text = json.loads(page.text)
answers = json_text['data']
offset += 10 if not answers:
print('获取图片地址完成')
return pic_re = re.compile('data-original="(.*?)"', re.S)
for answer in answers:
tmp_list = []
pic_urls = re.findall(pic_re, answer['content'])
for item in pic_urls:
# 去掉转移字符 pic_url = item.replace("", "")
pic_url = pic_url.split('?')[0]
# 去重复 if pic_url not in tmp_list:
tmp_list.append(pic_url)
for pic_url in tmp_list:
if pic_url.endswith('r.jpg'):
print(pic_url)
write_file(title, pic_url) def write_file(title, pic_url): file_name = title + '.txt' f = open(file_name, 'a')
f.write(pic_url + 'n')
f.close()
示例结果:
下面代码将读取文件中的图片地址并下载。
def read_file(title):
file_name = title + '.txt' pic_urls = []
# 判断文件是否存在
if not os.path.exists(file_name):
return pic_urls
with open(file_name, 'r') as f:
for line in f:
url = line.replace("n", "")
if url not in pic_urls:
pic_urls.append(url)
print("文件中共有{}个不重复的 URL".format(len(pic_urls)))
return pic_urls
def download_pic(pic_urls, title):
# 创建文件夹
if not os.path.exists(title):
os.makedirs(title)
error_pic_urls = []
success_pic_num = 0 repeat_pic_num = 0 index = 1 for url in pic_urls:
file_name = os.sep.join((title,basename(urlsplit(url)[2])))
if os.path.exists(file_name):
print("图片{}已存在".format(file_name))
index += 1 repeat_pic_num += 1 continue
try:
urllib.request.urlretrieve(url, file_name)
success_pic_num += 1 index += 1 print("下载{}完成!({}/{})".format(file_name, index, len(pic_urls)))
except:
print("下载{}失败!({}/{})".format(file_name, index, len(pic_urls)))
error_pic_urls.append(url)
index += 1 continue
print("图片全部下载完毕!(成功:{}/重复:{}/失败:{})".format(success_pic_num, repeat_pic_num, len(error_pic_urls)))
if len(error_pic_urls) > 0:
print('下面打印失败的图片地址')
for error_url in error_pic_urls:
print(error_url)
结语
今天的文章用 Python 爬虫制作了一个小脚本,如果小伙伴们觉得文章有趣且有用,点个 转发 支持一下吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07