
中国在政策上大力推动数字化产业转型,为AI人工智能发展提供了极佳的温床。
这不,好消息传来,《世界互联网发展报告2020》和《中国互联网发展报告2020》指出,我国在AI专利申请数量上首次超美国,成全球TOP1。
另外,5G网络技术及覆盖上的领先,推动着AI、大数据、云计算、区块链等迎来井喷式发展,这些高科技相互交错影响,产生了质的变化。
尤其是作为AI人工智能发展催化剂的大数据,人口大国具备“得天独厚”的优势,大数据自然离不开“大”字,即:大而广。
中国有14亿人口,产生的数据惊人,这背后暗含的数据“关联”或“相关性”,未来将发挥巨大价值。
大数据的繁荣,已助推AI完美实现弯道超车,让AI技术在中国“遍地开花”,快速且蓬勃地发展。
现如今,人工智能已渗透各行各业,大幅提升了企业生产效率,国内很多公司成立了专门研究未来创新技术的部门,如:阿里巴巴的达摩院等。
国内大佬腾讯、华为也成立了人工智能研究部门,京东亦有专门的事业部研究无人车、无人仓及无人机,甚至较传统的“美的集团”亦设立了机器人公司。
热门话题:AI人工智能
无论在国内,还是全世界,AI人工智能早已是热门话题,其发展前景极佳,已成未来10年最具发展潜力的行业之一。
然而,由于人工智能的概念宽泛,涉及算法、识别、语言处理等技术,被社会大众公认为高科技,导致很多人不敢轻易涉足。
诚然,“男怕入错行,女怕嫁错郎",人们对工作的选择谨慎小心是正确的,不过如果您担心自己不能从事人工智能,那不妨留意下周边行业。
和人工智能有着异曲同工之妙的行业,还有数据分析,大家可以上网搜搜,会发现与之相关的职业平均月薪接近20k,且大数据人才需求总量,将在未来5年突破2000万人的巨大缺口而发展起来的。
数据分析行业前景如何?
人力资源和社会保障部发布《新职业—大数据工程技术人员就业景气现状分析报告》显示,2020中国大数据行业人才需求规模达210万,未来5年该需求仍将以30%-40%增速发展。
2013-2017年排名前五职位增长率
图片来源:领英中国2019年《新兴职业报告》
据悉,如今的互联网、金融、咨询、电信、零售、医疗、旅游等行业,都迫切需要专门从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。
正所谓行业越热证书含金量越高,技能越硬越易被认证。类似CFA、CPA、PMP、ACCA快速发展并得到行业高度认可一样,数据分析行业内高含金量的认证也有着同样的轨迹。
CDA数据分析师认证由国际范围数据科学领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了公立性、共识性、前沿性,符合当今全球数据科学技术潮流,为各行业企业和机构提供数据人才参照标准。
从而,得到了教育部主管协会中国成人教育协会认可,跻身为2020年“终身学习品牌项目”,成为大数据及人工智能领域长期、稳定、专业的行业人才标准。
CDA数据分析师认证
如何报考
了解报考条件及政策
长按扫码,立即咨询
考取对的证书,不仅能成你入行敲门砖,还可让你拥有具备核心竞争力的技能。相信对于CDA数据分析师认证证书,大家心里还是有很多问题。
接下来,我们继续深入扒一扒这个证书
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28