
来源:麦叔编程
作者:麦叔
面向对象是所有高级语言(Python,Java,C++等)的基石,是重中之重。
这个文章系列的目的是通过简单易懂的例子,深入浅出,让Python学习者牢固地掌握Python面向对象的概念和方法。
本系列包括:
看这张图:
动物界具有天然的继承关系,人类也是,我们一代代继承下来。继承了前辈们的属性和能力,又发展了自己独特的属性和能力。
在图中的例子,我们如何在程序中表示普通的狗,牧羊犬,警犬等呢?
我们可以把detect(), protect()等函数和属性直接加在Dog里面,但这并不合理,因为并不是所有的狗可以侦查,并不是所有的狗都可以保护养。
正确的做法是创建新的类,这些新的类继承Dog类:
在这里Dog被称为父类,SheepDog等被称为子类。
子类会自动拥有父类的属性和方法,自己也可以添加自己的独特属性和方法。
现在来定义SheepDog。先看看我们原来的Dog类:
#类是一个模板 class Dog: num_of_dogs = 0 # 类属性 police_height = 60 #构造方法 - 添加实例属性,做其他的初始化工作 def __init__(self, name, height, power):
self.name = name
self.height = height
self.power = power
self.blood = 10 print(f"{self.name}出生了,汪汪!")
Dog.num_of_dogs += 1
#狗叫 def bark(self):
print(f'我是{self.name},汪汪汪!')
class SheepDog(Dog): '''牧羊犬,包括名字,高度,攻击力和能看护的养的个数''' def __init__(self, name, height, power, num_of_sheeps): super().__init__(name, height, power)
self.num_of_sheeps = num_of_sheeps
仔细阅读上面的代码,观察它的特点:
SheepDog(Dog) 这种写法:括号中的Dog表示Dog是SheepDog的父类。
我们定义Dog的时候没有括号,表示它没有父类(实际上它默认继承了Object类)。
子类的使用和父类是一样的:
sd1 = SheepDog('大黄', 67, 88, 10)
print(f'名字:{sd1.name}')
print(f'血量:{sd1.blood}')
print(f'高度:{sd1.power}')
sd1.bark()
我们给SheepDog添加它的独特方法protect():
class SheepDog(Dog): '''牧羊犬,包括名字,高度,攻击力和能看护的养的个数''' def __init__(self, name, height, power, num_of_sheeps): super().__init__(name, height, power)
self.num_of_sheeps = num_of_sheeps
def protect(self): print('我开始保护小羊啦!')
调用一下试试看:
sd1 = SheepDog('大黄', 67, 88, 10) sd1.protect()
因为继承的关系,SheepDog直接就有bark()方法,这是从父类继承过来的。
假设牧羊犬的叫声和普通叫声是不一样的,我们在子类中覆盖父类中的方法:
class SheepDog(Dog): '''牧羊犬,包括名字,高度,攻击力和能看护的养的个数''' def __init__(self, name, height, power, num_of_sheeps): super().__init__(name, height, power)
self.num_of_sheeps = num_of_sheeps
def protect(self): print('我开始保护小羊啦!')
def bark(self): print('我是牧羊犬,我骄傲!')
这时候再调用bark()方法就会使用子类中定义的方法:
sd1 = SheepDog('大黄', 67, 88, 10) sd1.bark()
打印的结果是:
我是牧羊犬,我骄傲!
类的继承和对父类方法的覆盖在代码设计中很有用。假设有个程序的界面是这样的:
按钮就是一个类,比如叫做Button。
为了实现不同的皮肤,我们可以写一个类继承Button类,假设就叫做MyButton吧,子类自动拥有了父类的属性和函数,但是我们可以覆盖某些函数,让他拥有不同的皮肤,甚至不同的行为。
面向对象的核心知识到这里就更新完了,最后奉上Dog版本的吃鸡游戏。这个游戏包含两个类:
dog.py
#2种狗具有不同的攻击力和防御能力。攻击强的防御弱;反之亦然; import random class Dog: dogs = [] #保存所有活着的Dog def __init__(self, name):
self.name = name
self.blood = 100 self.attack_power = 5 self.defense_power = 3 #攻击! def attack(self, dog2):
print(f'{self.name}攻击{dog2.name},攻击力:{self.attack_power},防御力:{dog2.defense_power}')
point = self.attack_power - dog2.defense_power
if(dog2.blood > point):
dog2.blood -= point
print(f'{dog2.name}受到攻击,奋力自救,血量减少为{dog2.blood}')
else: dog2.blood = 0 print(f'{dog2.name}受到攻击,失血过多,死亡!')
Dog.dogs.remove(dog2)
#判定狗的类型 def dog_type(self):
if(isinstance(self, SheepDog)):
return '牧羊犬' elif(isinstance(self, PoliceDog)):
return '警犬' else: return '普通犬' #牧羊犬 class SheepDog(Dog): def __init__(self, name):
super().__init__(name)
self.attack_power = random.randint(5, 10)
self.defense_power = random.randint(3,5)
print('牧羊犬{self.name}问世!')
self.dogs.append(self) #警犬 class PoliceDog(Dog): def __init__(self, name):
super().__init__(name)
self.attack_power = random.randint(8, 13)
self.defense_power = random.randint(1,3)
print('♀️警犬{self.name}问世!')
self.dogs.append(self)
game.py
#1. 首先创建100个Dog, 50个SheepDog, 50个PoliceDog #2. 每一轮游戏,随机选出2个Dog #3. dog1先攻击dog2,然后dog2攻击dog1 #3. 任何一方血量变为0就表明死亡!死亡的Dog退出游戏。 #4. 最后只有一个Dog了,游戏结束,胜利者可以吃鸡。 from dog import * import random #产生随机数字 import time #时间模块 #1.创建100条狗 for i in range(100):
if(i%2==0):
SheepDog(i+1) #创建1个牧羊犬 else:
PoliceDog(i+1) #创建1个警犬 #2. 开始游戏循环 while(True):
#判断是否只有1个Dog if(len(Dog.dogs) == 1):
winner = Dog.dogs[0]
print('')
print('大吉大利,今晚吃鸡!')
print(f'赢家是:{winner.dog_type()} {winner.name}')
print('')
break dog1, dog2 = random.sample(Dog.dogs, 2)
dog1.attack(dog2)
dog2.attack(dog1)
time.sleep(0.02)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30