京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
面向对象是所有高级语言(Python,Java,C++等)的基石,是重中之重。
这个文章系列的目的是通过简单易懂的例子,深入浅出,让Python学习者牢固地掌握Python面向对象的概念和方法。
本系列包括:
看这张图:
动物界具有天然的继承关系,人类也是,我们一代代继承下来。继承了前辈们的属性和能力,又发展了自己独特的属性和能力。
在图中的例子,我们如何在程序中表示普通的狗,牧羊犬,警犬等呢?
我们可以把detect(), protect()等函数和属性直接加在Dog里面,但这并不合理,因为并不是所有的狗可以侦查,并不是所有的狗都可以保护养。
正确的做法是创建新的类,这些新的类继承Dog类:
在这里Dog被称为父类,SheepDog等被称为子类。
子类会自动拥有父类的属性和方法,自己也可以添加自己的独特属性和方法。
现在来定义SheepDog。先看看我们原来的Dog类:
#类是一个模板 class Dog: num_of_dogs = 0 # 类属性 police_height = 60 #构造方法 - 添加实例属性,做其他的初始化工作 def __init__(self, name, height, power):
self.name = name
self.height = height
self.power = power
self.blood = 10 print(f"{self.name}出生了,汪汪!")
Dog.num_of_dogs += 1
#狗叫 def bark(self):
print(f'我是{self.name},汪汪汪!')
class SheepDog(Dog): '''牧羊犬,包括名字,高度,攻击力和能看护的养的个数''' def __init__(self, name, height, power, num_of_sheeps): super().__init__(name, height, power)
self.num_of_sheeps = num_of_sheeps
仔细阅读上面的代码,观察它的特点:
SheepDog(Dog) 这种写法:括号中的Dog表示Dog是SheepDog的父类。
我们定义Dog的时候没有括号,表示它没有父类(实际上它默认继承了Object类)。
子类的使用和父类是一样的:
sd1 = SheepDog('大黄', 67, 88, 10)
print(f'名字:{sd1.name}')
print(f'血量:{sd1.blood}')
print(f'高度:{sd1.power}')
sd1.bark()
我们给SheepDog添加它的独特方法protect():
class SheepDog(Dog): '''牧羊犬,包括名字,高度,攻击力和能看护的养的个数''' def __init__(self, name, height, power, num_of_sheeps): super().__init__(name, height, power)
self.num_of_sheeps = num_of_sheeps
def protect(self): print('我开始保护小羊啦!')
调用一下试试看:
sd1 = SheepDog('大黄', 67, 88, 10) sd1.protect()
因为继承的关系,SheepDog直接就有bark()方法,这是从父类继承过来的。
假设牧羊犬的叫声和普通叫声是不一样的,我们在子类中覆盖父类中的方法:
class SheepDog(Dog): '''牧羊犬,包括名字,高度,攻击力和能看护的养的个数''' def __init__(self, name, height, power, num_of_sheeps): super().__init__(name, height, power)
self.num_of_sheeps = num_of_sheeps
def protect(self): print('我开始保护小羊啦!')
def bark(self): print('我是牧羊犬,我骄傲!')
这时候再调用bark()方法就会使用子类中定义的方法:
sd1 = SheepDog('大黄', 67, 88, 10) sd1.bark()
打印的结果是:
我是牧羊犬,我骄傲!
类的继承和对父类方法的覆盖在代码设计中很有用。假设有个程序的界面是这样的:
按钮就是一个类,比如叫做Button。
为了实现不同的皮肤,我们可以写一个类继承Button类,假设就叫做MyButton吧,子类自动拥有了父类的属性和函数,但是我们可以覆盖某些函数,让他拥有不同的皮肤,甚至不同的行为。
面向对象的核心知识到这里就更新完了,最后奉上Dog版本的吃鸡游戏。这个游戏包含两个类:
dog.py
#2种狗具有不同的攻击力和防御能力。攻击强的防御弱;反之亦然; import random class Dog: dogs = [] #保存所有活着的Dog def __init__(self, name):
self.name = name
self.blood = 100 self.attack_power = 5 self.defense_power = 3 #攻击! def attack(self, dog2):
print(f'{self.name}攻击{dog2.name},攻击力:{self.attack_power},防御力:{dog2.defense_power}')
point = self.attack_power - dog2.defense_power
if(dog2.blood > point):
dog2.blood -= point
print(f'{dog2.name}受到攻击,奋力自救,血量减少为{dog2.blood}')
else: dog2.blood = 0 print(f'{dog2.name}受到攻击,失血过多,死亡!')
Dog.dogs.remove(dog2)
#判定狗的类型 def dog_type(self):
if(isinstance(self, SheepDog)):
return '牧羊犬' elif(isinstance(self, PoliceDog)):
return '警犬' else: return '普通犬' #牧羊犬 class SheepDog(Dog): def __init__(self, name):
super().__init__(name)
self.attack_power = random.randint(5, 10)
self.defense_power = random.randint(3,5)
print('牧羊犬{self.name}问世!')
self.dogs.append(self) #警犬 class PoliceDog(Dog): def __init__(self, name):
super().__init__(name)
self.attack_power = random.randint(8, 13)
self.defense_power = random.randint(1,3)
print('♀️警犬{self.name}问世!')
self.dogs.append(self)
game.py
#1. 首先创建100个Dog, 50个SheepDog, 50个PoliceDog #2. 每一轮游戏,随机选出2个Dog #3. dog1先攻击dog2,然后dog2攻击dog1 #3. 任何一方血量变为0就表明死亡!死亡的Dog退出游戏。 #4. 最后只有一个Dog了,游戏结束,胜利者可以吃鸡。 from dog import * import random #产生随机数字 import time #时间模块 #1.创建100条狗 for i in range(100):
if(i%2==0):
SheepDog(i+1) #创建1个牧羊犬 else:
PoliceDog(i+1) #创建1个警犬 #2. 开始游戏循环 while(True):
#判断是否只有1个Dog if(len(Dog.dogs) == 1):
winner = Dog.dogs[0]
print('')
print('大吉大利,今晚吃鸡!')
print(f'赢家是:{winner.dog_type()} {winner.name}')
print('')
break dog1, dog2 = random.sample(Dog.dogs, 2)
dog1.attack(dog2)
dog2.attack(dog1)
time.sleep(0.02)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27