京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源: 麦叔编程
作者:麦叔
很多在校生或者自学编程的人表示:我没有项目经验,应该怎么办?
在开源盛行的今天,我们根本不缺乏项目,随便在Github上搜索一下就可以找到成千上万的高质量的项目供你学习和实践。
我们缺乏的是:把开源项目内化的方法,让开源项目变成自己的项目的例子。
本文分享6个内化开源项目的步骤,以及4个加深项目经验的步骤。如果你认真执行这些步骤,项目经验将不再是问题。
一、步子大了容易扯着蛋
这里说的项目是指比较综合的项目,具有一定商业价值的项目,写在简历上可以给你加分的项目,比如:
项目虽好,但我不推荐初学者上来就做这种项目,步子大了容易扯着蛋。
在做项目之前,必须先有一定的编程基础:
否则就算你比着葫芦画瓢把项目运行出来了,项目随便出点问题,你就傻眼了,因为一些基础的知识你都不懂。或者让你做点复杂点的功能,完全没有思路。
所以在实践本文的步骤之前,先掂量一下,自己是否已经有了一定的基础。
并不是说从零开始学习编程就不能实战入门,相反,我非常推崇实战项目入门的方法,所以我在B站分享很多Python,Java的小游戏,小项目的教程:
这些都很适合零基础学习编程,但如果放在简历上就太单薄了。
在B站搜索:麦叔编程,可以查看这些视频。公众号在近期也会开通相关的小程序。
在接下来两周,我会发布学习文章,也是防止扯了蛋:
请保持关注。
如果你已经有了一定的基础,就可以开始找个开源项目,练练手。
找项目的方法很简单,可以去github,或者国内的gitee上,搜索你感兴趣的项目,挑选点赞数比较多的就可以了。
但这里我想提醒一下,一定要循序渐进,找适合自己的项目,并不是点赞多的就是最开始学习。
以Java开源项目为例,我认为要分成几个层次:
再说一遍,我的主要意思是:要循序渐进,找适合自己的项目。
如果你不知道如何循序渐进,在接下来的一两周之内我会发布:
请保持关注。
假设你已经确定了一个开源项目,怎么下手呢?
按照下面的6个步骤来:
架构图示例:
流程图示例:
经过这样的6个步骤,你一定有信心把项目写到自己的简历上。实际上,你可能会比真正有工作经验的人还要表现的好。
我见过很多工作了几年的人,都不能画出自己的项目的架构图,对项目需求一知半解,问到点深入的问题就答不出来。如果你有实际的工作经验,也可以应用上面的几个步骤。
如果你觉得这个几个步骤很好,但还是感觉不知道怎么下手,在接下里一两周,我会选取一个开源项目,带你一步步实践上面的6个步骤。请保持关注。
经过上面的6个步骤,你的项目经验应该没问题了,但是你没有真正的在一个团队中工作过,你没有团队合作经验,这可能会是一个问题。
下面分享的4个步骤帮你获得团队合作经验:
如果你很难找到合作伙伴,我创建了一个“项目实战互助群”,也许这里你能找到你的合作伙伴。请在公众号回复项目加入群聊。
我知道,说起来容易,做起来难!但是不做会更难。
如果下决心,严格执行这些建议,项目经验绝对不会成为你的障碍。
为了更好的帮助大家,在下面的一两周我会推出相关的文章:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07