京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在互联网时代下,凭感觉和经验来做决策的时代已经过去了,作为一名数据分析人员不仅要跟着时代进步,也要跟着我们的产品及时做出合理调整。
那么数据分析究竟是干什么呢?我们又该如何搭建高效的数据分析体系?并运用数据分析问题、提出问题、解决问题呢?
数据分析简单的来说让业务变得更好。让业务变得更好对企业而言主要体现在两大方面:一是对企业用户体验的改进方面,优化原有业务流程,为用户提供更好的用户体验。二是体现在对企业资源的合理化分配利用上,更合理的优化配置企业资源,进而达到效益最大化的目的。
其次主要是利用数据查找发现人们思维上的盲点,进而发现新的业务机会的过程。在分析数据的过程中可能会发现新的业务机会,进而扩展出更多的功能,使得发现更多的商业机遇。
最后说说创造新的商业价值模式方面,一般来说创造新的商业价值模式就是在数据价值的基础上形成新的商业模式,将数据价值直接转化为商业模式或离商业更近的过程。这一点就是数据分析的作用的最高体现。
同时,数据分析工作在企业运营的时候还能够及时的发现出企业自身的问题,对于业务运营过程中可能会出现的问题作预警,将问题处理在萌芽状态,防患于未来。或者通过数据分析工作去进行对企业未来发展方向的预测。
二、如何搭建高效的数据分析体系?
1.认准服务对象
不同部门的关注点不同,同样是销售问题,如果是销售部看,关注的是每一支销售队伍完成率、进度、质量。如果是供应链看,那关注的就是总量、各产品数量、需求高峰期。如果是风控看,那关注的就是回款、坏账、套利。认清部门,有利于了解真正需求点。
一般来说,越是管理层就越关注策略问题,越是基层就越关注执行问题。即使有些看起来一个人也能办的事,在企业里也有分工合作。
2.跟踪业务走势
有了清晰的责任人、目标,就可以跟踪业务走势。在跟踪的时候,首先关注的是:目标达成情况。对于目标达成率监督,涉及到后续一系列行动判断,遇事先判断轻重缓急,再看细节。不同等级的人,关注重点不同。
3.复盘行动结果
当一场活动完成后,我们就需要复盘活动的结果,总结经验。通过分析复盘,可以把明显的作死行为总结出来,避免其他人再犯错。
有了分析结论,下次活动就能规避大量坑点。做业务从来不怕失败,怕的是败的不明不白。如果能长期积累,业务方面经验越来越丰富,遇到问题的思路也越来越清晰了,就真正发挥了数据的作用。但是我们每次遇到的问题肯定不会是一成不变的,因此数据分析体系也要不断的升级。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20