京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最近总有人问我,数据分析师未来的发展前景怎么样?也许很多人都会有这个疑问吧。今天我来为大家解答一下未来数据分析师的发展前景以及在企业中扮演什么样的角色。
在互联网的快速发展下,目前各大公司对数据分析相关岗位的要求持续上升。据统计全国500强企业中,90%以上都建立了数据分析部门。
对于数据分析师来说,所有公司都有数据。他们需要找到一种方法,利用它来分析解决方案,让数据分析提高价值。
1.分析竞争对手
企业想要迅速发展,是一定要了解自己竞争对手的。比如说我们是一家电商公司,那么我们一定要了解竞争对手这个月的主营产品、销售额、折扣优惠等等。这样才有利于我们做好调整,更好的去安排。
2.推广渠道效果监测
当你为企业做广告投放的时候,你是不是需要提前对这些推广渠道的数据进行监测。比如说账号的活跃度、曝光量,只有把这些东西计算好了,你才能预估出这个广告可以为我们带来多首收益。
这个反馈完全可以给以后继续做营销做决定,按效果去调整哪些渠道继续投放广告,哪些渠道砍预算,哪些渠道不投放了。
是一个非常复杂和耗时的过程。这涉及到很多高技术知识。这些公司提供的是一套处理数据摄取、清理、建模和显示的工具。有些人什么都做,有些人只做一部分,这取决于他们想要探索的细分市场。
3.产品的用户群体
当我们一款新的产品上线时,首先要知道店铺里的哪些用户可以首批付费使用,这个和我们的日常监测以及标签有关。平台就可以发信息推送给这类用户,就可以分析出我们的产品用户是否满意,数据分析准不准确了,那里是需要调整的。
企业想有更好的发展就要不断的更新技术,大数据技术将提供最好的数据分析解决方案,而大数据人工智能也逐渐成为了各大企业重点研究方向之一,毕竟人工智能是未来科技发展的必然趋势。
那我们数据分析师需要掌握哪些基础知识呢?
1.Excel:会进行简单的数据处理,一般进入互联网公司会做一些报表,数据处理的工作。这类工作需要和其它技能相结合才有发挥空间,前景可以做行业数据分析。
2.编程和SQL:互联网公司基本都需要,因为互联网的追踪反馈系统很重要,数据分析师在这里扮演的角色就是一个技术—管理层之间的角色,略懂技术,但是也可以大概通过数据得出一点儿结论,给决策层做决策做出有价值的建议。
3.机器学习:这方面的人都是可遇不可求的,但是有一点儿需要搞清楚,人工智能和数据分析师是两个概念,只是使用的工具有交叉,数据分析师一般不会用特别复杂的算法,反而讲究的是快速使用模型并反馈。
数据分析师对于企业来说是非常重要的,无论你是想做行业数据分析,或者是机器学习,前景都是非常好的,不用担心就业问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04