京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多人掌握了大多数的分析工具和技能,仍然做不好数据分析。面对业务时还是会两眼一抹黑,啥也不知道。
做数据分析光靠技能和工具是不够的。还必须拥有数据思维,如何搭配这些分析方法?如何得出结论?
数据粉丝思维究竟是什么样的,我们一起聊一下吧。
1. 对比思维
日常生活中我们常常会遇到,例如今天我去超市看到了7块钱1斤的苹果,但是隔壁却卖6块一斤,你是不是会去隔壁看一下。他们之间有什么区别,为什么会贵出这一元钱。
从这个例子中可以看出,对比通常有两个方向,一个纵向,是指不同类的对比。一个是横向,是指与同类相比。
2.结构思维
很多人在做数据分析的时候没有思路,不知道从何下手,这就是缺少结构化思维的表现。
1.按业务职能结构划分:比如渠道,运营,功能等相关模块,简单快速的沟通,能快速的定位问题原因,但是缺点是分析结果不够直接,依赖外部资源信息搜集。
2.按因果结构划分:通过定位指标波动,定位最细指标,辅助维度下转,能够清楚的问题原因,该方式是较为稳妥的方式,是日常工作中的主要方式,但是缺点是需要构建相对完整的指标逻辑体系。
我们在思考问题的时候,习惯用点对点的方式,想到一点就是一点也就是说是乱打枪,也许有可能你可以凭借着经验找到原因但是大多数情况下,你很难找到完全穷尽的原因,也就是为什么你的数据分析总是没思路。
3.分类对比
这里我们可以划分为客户群体、产品归类、市场分级、绩效评价等,许多事情都需要有分类的思维。到底分类思维怎么应用呢?
关键点在于分类后的事物,需要在核心指标上拉开距离!也就是说分类后的结果,必须是显著的。运营当中关注的核心指标,分类后的对象,你能看到他们的分布不是随机的,而是有显著的集群的倾向。
4.可衡量
好的分析思维,我们要想清楚如何衡量效果?也要考量和现实之间的差距,中间的可操作性。
有想法不会操作:那就学工具、学方法论、学算法,开始先用excel来跑通操作,后面再去学习python。
会操作没有想法:那就学方法论、学思维,好好思考方法论、业务、算法之间的关系。
以上总计了数据分析的4种思维,分别是对比、结构、分类、可衡量,无论是生活还是工作,运用好这些分析方法,相信你一定可以创造出更多的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04