京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近日,博鳌亚洲论坛国际科技与创新论坛首届大会隆重开幕,会上指出科学技术应造福人类,为解决和应对全球性发展难题和挑战提供新路径。
图片来源:央视新闻
同时,大会表示每次科技的变革和突飞猛进,都离不开大数据支持,数据已渗透各行各业,未来数据势必像空气般无处不在。
在此大趋势下,大数据及数据分析行业已呈现出井喷式增长模式。据悉,2020中国大数据行业人才需求规模预计达210万,而未来5年的需求总量将突破2000万人。
诚然,越高速发展的领域,越亟需稳定、专业、多方认可的认证体系,如CFA、PMI初衷均是为建立职业共同体,解决行业乱象和共同面临的难题,并推动行为规范、道德准则等制定,规范行业的健康发展。
欣欣向荣的大数据及相关领域自然不例外,行业内亟待体系化的人才教育、认证标准作指导,从而提高企业、高校、学生、求职者间的联动性,帮彼此快速找到对方,降低交易成本,增加人才的可信度。
CDA证书样本
在行业中有志人士共同努力下,CDA数据分析师认证应运而生,得到了教育部主管协会中国成人教育协会认可,跻身为2020年“终身学习品牌项目”,担当起连接企业、高校、从业者的纽带角色。
CDA数据分析师证书涵盖了大数据、人工智能及数据分析从业者所需技能,为全球企业和机构提供了含金量较高的数据分析人才参照标准。
CDA所获荣誉
同时,CDA数据分析师认证证书亦代表着持证者具备过硬的业务数据分析实操能力、可获得较高的薪资、拥有更多工作选择可能性等。
新时代职场技能,持证者薪资较高
以全国TOP10城市为例,对比求职市场上数据分析职位CDA持证人与非持证人的月薪,发现系统学习并获CDA Level I、CDA Level II、CDA Level III等级认证的持证者月平均工资,均高于非持证者。
LEVEL I持证人群和非持证人月薪TOP10城市比对
LEVEL II持证人群和非持证人群月薪TOP10城市比对
LEVEL III持证人群和非持证人群平均月薪比对
CDA已成新时代的职场技能代表,而且这样的情况并不局限于一线城市,在二三线城市也较明显。
行业选择多,持证者未来更精彩
数据分析认证市场需求量巨大,未来5年数据分析师将以超20%的年增长率高速增长,市场迫切需求让数据分析岗呈现多元化面貌。
纯数据孵化出数据工程师、数据科学家和人工智能专家等,而伴随企业数字化转型,不同行业不同岗位都对数据分析技能提出了不同要求,使得数据赋能更加多样化。
因此,分工细、选择多的数据分析技能得到了求职者青睐,这也是CDA认证考生数量逐年攀升,近两届的增长率更是高达40%的关键因素之一。
CDA历届考生增长率
行业门槛低,证书认证持证者能力
数据分析行业在国内是新兴产业,迫切的市场需求使得企业更注重从业者的实操能力而非学历,故而这个行业的整体门槛并不高。
当然,正因缺少学历约束,企业想找到合适的人才,就需要依靠高含金量证书。
故而,CDA数据分析师认证得到了政府、企业和从业者的青睐,持证人已遍布全球,引进CDA证书作为内部数据分析人才的评定标准的企业亦大幅提升。
小编语:对于数据分析行业,CDA认证为从业者增添了多项获胜的砝码,是数据领域一个非常不错的第三方独立认证证书。
CDA认证报考流程
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到教育部直属中国成人教育协会及大数据专业委员会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名>>点击报名
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试 >看看我所在的地哪里报名<
Level Ⅱ+Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州>看看我所在的地哪里报名<
报考条件
业务数据分析师 CDA Level I >了解更多<
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
建模分析师 CDA Level II >了解更多<
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
数据科学家 CDA Level III >了解更多<
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅱ认证证书;
2、本科及以上学历,需从事数据分析相关工作3年以上;
3、本科以下学历,需从事数据分析相关工作4年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
(备注:数据分析相关工作不限行业,可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20