京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:接地气的陈老师
来源:接地气学堂
数据分析如何助力运营,直接上干货,开整!
问题场景:某电商公司,近期通过数据发现有大量用户出现添加商品至购物车但不付款(简称:加购未购)的情况,运营已针对此情况开展工作,但领导们不满意,要求数据分析组通过用户画像模型进行加购未购客群分析,提升付款比例。假设你是该公司的数据分析师,问……
问题1:你是数据分析师,你第一件事做什么?
先思考这道问题。如果这个题目想不明白,那思考下个题目
问题2:在本场景里,领导的需求是什么?
先思考这道问题。如果这个题目想不明白,那思考下个题目
问题3:你在网站买东西,以下哪个最能让你下决心付款
思考一分钟,揭晓答案哦
1 运营优化项目,从这里做起
数据分析之所以做了没屁用,80%是脱离实际,闭门造车的结果。脱离实际,闭门造车的根源,在于做数据的人太沉迷于数据本身,忘了真正要干啥。比如本案例场景,如果扒皮抽筋的问上边三个问题,傻子都会看明白:
1、用户只会为了一个具体价格的具体商品买单,不会为ppt、代码买单。
2、领导需要的是改善运营工作,运营工作对应的是文案、活动、页面、价格。
3、改善运营工作,得先整明白人家在做什么,到底有多少空间可以改善。
4、至于算法、模型、报告、公式、甚至数字,都是寻找改善方法的一种手段。
所以第一时间,得去找运营谈这些:
1、目前针对该客群有哪些措施
2、各项措施上线时间点
3、领导具体不满意表现
注意,第一步要了解的是具体动作,至于这个动作的好坏,可以听运营解释,但是更多的要自己去分析。结合数据趋势,发现潜在机会点和问题点(如下图)
这里沟通的技巧也很重要。注意,在本场景里,领导们的不满已经是挂在脸上的,这时候在运营面前,要坚决表现出:“我是和你们一起想办法,我们一起把这个差交了”。这样才能争取到更多支持。如果摆出一副:“我牛逼,你们都是傻逼”的态度,那就等着被人各种掣肘,最后落魄收场吧 。
2 第二个关键问题
问题4:经了解,发现运营目前的做法是,按加入购物车的金额的10%派券,比如100元商品派10元,200元派20元,无差别派券。了解到这个以后,你会做……
先思考这道问题。如果这个题目想不明白,那思考下个题目
问题5:你会如何证明,你对加购未购问题产生了积极作用
先思考这道问题。如果这个题目想不明白,那思考下个题目
问题6:以下哪种情况,能证明新策略产生了效果(如下图)
思考一分钟,揭晓答案哦
3 破局,从这里开始
人的普遍心理就是:等得越久,期望值越高。特别在已经开始着急的时候,就更希望能快速见到效果。
所以在本场景里,用户画像也好,模型也好,报告也好,都对,但是首要考虑的是:多长时间见效。见效越快越好。
同时,见效的方法越简单越好。因为越复杂的方法,能参与进来的人越少,意味着自己背的锅越大。
比如上一个“超精准购买模型”,除了做数据的谁都看不懂。那最后如果效果不好,势必只有做数据的自己背锅。这又牵扯到:“写多少行代码能让顾客消费”的问题。总之,不要指望代码,要和运营并肩作战,优先丢优惠券。
可能很多同学听了:见效又快又好,就觉得难办。注意,这里“见效”也是有好几种效果的。用最简单的投入产出比概念,减少投入,增加产出,提高比率,都算有效。所以,从一开始就不要把目标定为彻底解决问题,而是不断优化效果。这样既容易交差,又能持续见成绩。
这样梳理后,思路就清晰多了:目前的全面派券是很粗暴的做法,不同商品的利润率不一样,这么简单粗暴打折,很有可能严重压缩毛利,甚至出现负毛利产品。同时,有些商品临近保质期,可以释放更多利润出来清货,有些商品本身利润很高,有空间再释放出来。这样梳理完,第一阶段的行动就很清晰了(如下图)
4 迭代,持续优化效果
问题7:以下两个选择,先做哪一个?
注意,本场景,是领导已经不满意了,都找到外部门了。这种情况下,如果上来就说:“我们还要追加XXX万投入”,要么本直接喷回来,要么领导们期望值会被吊得更高,以为追加以后效果无敌好。
这两种情况都是在给自己挖坑!所以最好先从砍成本的角度入手,先砍掉一个明显负产出的补贴,释放营销费用;之后再做一些临期产品、清库存产品;之后再拿释放出来的费用贴高利润产品,把加购转化率拉高。
之后还可以持续迭代,比如高利润产品的转化率已经提高的前提下,可以做价格弹性测试,适当减少补贴,再释放一波营销费用;单品做的差不多了,可以拿释放出的利润做满减、或者交叉销售。
这些还都是单纯的在价格上做文章,数据计算难度小,又容易见效。毕竟给的是真金白银的优惠券。
这样折腾下来,不但能见效,而且能拖很长时间。每个月试点,迭代四五次,至少也能拖个半年。这半年宝贵的时间,可以拿来为“人工智能算法推荐”“大数据用户画像洞察”做数据积累,也能争取到充足的时间训练模型。
在价格玩的差不多的时候,就能自然续上,效果持续优化,人人开心。比一开始憋大招,憋半年然后屁用,没有灰溜溜的走人,要强的多(如下图)。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12