
作者:伍正祥
来源:AI入门学习
一、图形概述
平行坐标是一种通常的可视化方法, 用于对 高维几何多元数据的可视化。为了表示在高维空间的一个点集, 在N条平行的线的背景下,一个在高维空间的点被表示为一条拐点在N条平行坐标轴的折线,在第K个坐标轴上的位置就表示这个点在第K个维的值。
平行坐标是信息可视化的一种重要技术。 为了克服传统的笛卡尔直角坐标系容易耗尽空间、 难以表达三维以上数据的问题, 平行坐标将高维数据的各个变量用一系列相互平行的坐标轴表示, 变量值对应轴上位置。 为了反映变化趋势和各个变量间相互关系,往往将描述不同变量的各点连接成折线。所以平行坐标图的实质是将 维欧式空间的一个点Xi(xi1,xi2,...,xim) 映射到 维平面上的一条曲线。
平行坐标图可以表示超高维数据。 平行坐标的一个显著优点是其具有良好的数学基础, 其射影几何解释和对偶特性使它很适合用于可视化数据分析。下面我们看看具体的应用案例。
二、案例学习
Millward Brown每年都会总结全球范围内最具价值的品牌,Valerio Pellegrini根据2010至2015年的前100位品牌的排名变化,下图是利用平行坐标图进行可视化的结果,从图中可以看出来,谷歌、IBM、苹果、微软的排名都比较稳定,变动不大,而处于中下的公司,每年的排名波动则比较大,并且每年都有新进品牌。非常清晰的实现了多样本、多维度的对比分析。
100 MOST VALUABLE BRANDS 2010-15
下面的平行坐标图也是对1990至2013年,全球移民目的地和来源地的排名进行了可视化。
《全球移民路线图:美国为移民首选目的地》网易数读
下面的图,表达了1978年—2017年,大陆各省人均GDP的名次变化,图中包含的信息量非常大。
1)40年来,北京、上海、天津一直占据top 3,只不过换了个位置
2)天津一度占据榜首
3)黑龙江和甘肃高开低走,就像瀑布一样一泻千里
4)福建低开高走,上升迅猛,都说福建人会做生意,此数据显示,不假
5)贵州打开跌停板,近几年摆脱垫底,估计是贵阳发展大数据的原因
6)海南冲高回落,几乎又回到了原点
还包含了更多的信息,比如每个大BOSS任期内,是否存在重大扶持的省份等……
下图是1978年—2017年,大陆各省总体GDP的名次变化,同样包含特别多的信息,大家可以分析下。
(1978-2017年全国各省区GDP排名,不含香港、澳门、台湾,数据来源国家统计局及各省统计年鉴,制图@张靖/星球研究所)
在平行坐标图中,每个变量都有自己的轴线,所有轴线彼此平行放置,各自可有不同的刻度和测量单位,一系列的直线穿越所有轴线来表示不同数值。
另外,虽然轴线排列没有固定的顺序,但是因为相邻变量会比非相邻的变量更容易进行比较,所以轴线排列的顺序可能会影响读者理解数据。
在平行坐标图里,各轴的单位一般是不相同的,所以不能进行跨轴的数据比较。但是在上文提到的关于不同年份的排名时,由于是对相同变量的可视化,所以可以进行跨轴比较。因而,在读图时,我们要注意各轴的测量单位。
三、绘图指南
1、R语言绘图
说实话,R语言的这个包绘图比较丑,大家有没有更好的包推荐,上面的案例,基本上都有组合P图的痕迹,直接画的软件还没发现比较好的。
#安装与加载包
#install.packages('lattice')
library(lattice)
data(iris)
parallelplot(
~ iris[1:4],
data = iris,
groups = Species,
horizontal.axis = FALSE,#是否要垂直展示
scales = list(x = list(rot = 90))
)
2、线上Echarts绘图
网址链接:http://echarts.baidu.com/examples/
改变图中的代码,即可完成想要的图
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29