京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:刘早起
来源:早起Python
大家好,这个国庆,你出去旅游了吗?每次假期后网友总爱去微博、知乎吐槽国庆旅游的坑爹景点,相关话题也频上热榜,在国庆期间也有相关文章[1]通过整理对应话题统计出最坑爹城市前五名分别为杭州、西安、厦门、北京、南京,而最坑爹景点则有西湖、兵马俑、鼓浪屿、故宫、夫子庙、黄鹤楼等[2]。
本文通过Python爬取旅游网站评论数据,分析这些城市和景点在国庆期间到底表现如何,是否真的像网友吐槽的那样坑爹。
01、数据来源与说明
本文使用的数据均来源于携程旅行官网对应景点评论,采集时间段为2020-09-30至2020-10-08。因其所有数据均来自于具体订单完成后评价,使用该的数据相比社交平台讨论数据而言将更加真实。下面将以故宫为例简单说明如何使用Python爬取数据,首先打开对应页面
https://you.ctrip.com/sight/beijing1/229.html
如上图所示,按下F12之后在评论区域点击最新即可找到存储打分、评价等数据的包,之后只需查看headers等相关信息,使用Requests构造请求即可取下数据,要注意的是该请求为post形式,所以需要传入对应参数才可以,此处不做过多讲解。
但由于我们只需要国庆期间的数据,最多的景点也不过100多页评论,所以另外一种方法是使用Selenium模拟浏览器操作也可以轻松成功拿下数据,之后使用pandas清洗即可。
最终本文选取的字段为:
02、不同城市旅游热度分析
本节我们将国庆期间各省份排名前三的景点评论数量进行汇总,整理后数据的视为该省份的旅游热度,计算得到不同省份旅游热度,最热门的城市为北京,其次是江浙沪以及湖北、四川、广东、福建等省份。而这个热度排名也基本与前文提到的社交平台吐槽排名符合。
现在我们对网友评出最坑爹城市前五名的杭州、西安、厦门、北京、南京的旅游景点热度单独分析。
从评论数量来看,热度排行前列的景点基本在北京和西安,最受欢迎的景点为西安的兵马俑,而备受吐槽的西湖、鼓浪屿、夫子庙等地在网站并没有太多的评论,可能与这些景点无需门票而无法产生订单有关。
03、“坑爹”景点分析
——好评度分析
本节我们进一步对上述五个城市的景点进一步分析其坑爹程度,我们对不同景点的网友好评度进行分析。
根据该网站数据,兵马俑和故宫分别斩获近9成网友的好评,而西湖和鼓浪屿的好评度仅在80%左右,黄鹤楼也有近85%的网友给出好评,当然这里的好评仅为网友给出的总分,可以视为整体评价,接下来将对具体的评论内容进行分析。
——评论情感分析
现在我们将每一个评论的具体内容进行情感分析。
可以看到,虽然上一节的好评度分析中,每个景点都有超过8成的网友给出好评,但是从评价内容来看,给出正向的评价网友除了故宫之外,均不足8成,而整体评价较好的兵马俑,却有24.79%的网友给出负向评价。
——其他指标分析
在我们采集到的数据字段中除了总得分(好评)之外,还有景色、趣味、性价比三个指标,现在看一下不同总分的各项指标得分对比
不难看出在高分评价中,性价比指标的得分高于趣味性,而低分评价中则恰好相反,说明性价比不足更容易更容易让网友反感。研究该部分评论发现大多是在吐槽景区的(额外)消费高。
04、“坑爹”景点说什么
最后让我们来看看上述五个景点的词云分析,看看网友到底在吐槽什么。
北京—故宫
今天恰逢紫禁城600周年,故宫也有很多的特别展出,大多数网友都在赞叹故宫的宏伟磅礴,而由于疫情原因,故宫限流,也有小部分人在吐槽门票难抢。
厦门—鼓浪屿
下面是鼓浪屿的评论词云,除了景色不错之外,体验一般也很突出,其次就是上面说过的性价比不足,景点消费贵。
杭州—西湖
西湖词云同样是景色不错,但是不够好玩,性价比不足,其次就是排队时间太久
其实西湖景区并不大,国庆期间难免会人人人人人
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05