京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小伍哥
来源:AI入门学习
一、应用概述
最近做一个项目,发现很多场景,把汉字转换成拼音,然后进行深度学习分类,能够取得非常不错的效果,在做内容识别,特别是涉及到同音字的时候,转换成拼音就显得特别重要。比如垃圾广告识别:公众号、工仲号、躬总号,公众號、微信、威信、维伈.........,pypinyin是我用的一个比较好用的Python包,给大家分享下,当然,在其他很多场景也是可以使用的,排序、检索等等场合。
二、有关文档
GitHub: https://github.com/mozillazg/python-pinyin
文 档:https://pypinyin.readthedocs.io/zh_CN/master/
PyPi :https://pypi.org/project/pypinyin/
三、关于安装
#可以使用 pip 进行安装 pip install pypinyin #easy_install 安装 easy_install pypinyin #源码安装 python setup.py install
四、核心函数
1、pypinyin.pinyin
语法:pypinyin.pinyin(hans, style=Style.TONE, heteronym=False, errors='default', strict=True)
功能:将汉字转换为拼音,返回汉字的拼音列表。
参数:
from pypinyin import pinyin, Style
import pypinyin
#普通模式
pinyin('中心')
[['zhōng'], ['xīn']]
pinyin('公众号')
[['gōng'], ['zhòng'], ['hào']]
# 启用多音字模式
pinyin('中心', heteronym=True)
[['zhōng', 'zhòng'], ['xīn']]
# 设置拼音风格
pinyin('中心', style=Style.NORMAL )
#普通风格
[['zhong'], ['xin']]
pinyin('中心', style=Style.FIRST_LETTER)
[['z'], ['x']]
pinyin('中心', style=Style.TONE2)
[['zho1ng'], ['xi1n']]
pinyin('中心', style=Style.TONE3)
[['zhong1'], ['xin1']]
pinyin('中心', style=Style.CYRILLIC)
#汉语拼音与俄语字母对照风格
[['чжун1'], ['синь1']]
2、pypinyin.lazy_pinyin
语法:pypinyin.lazy_pinyin(hans, style=Style, errors='default', strict=True)
功能:将汉字转换为拼音,返回不包含多音字结果的拼音列表,与 pinyin() 的区别是返回的拼音是个字符串, 并且每个字只包含一个读音
参数:
from pypinyin import lazy_pinyin, Style
import pypinyin
lazy_pinyin('中心')
['zhong', 'xin']lazy_pinyin('微信公众号')['wei', 'xin', 'gong', 'zhong', 'hao']
lazy_pinyin('中心', style=Style.TONE)
['zhōng', 'xīn']
lazy_pinyin('中心', style=Style.FIRST_LETTER)
['z', 'x']
lazy_pinyin('中心', style=Style.TONE2)
['zho1ng', 'xi1n']
lazy_pinyin('中心', style=Style.CYRILLIC)
['чжун1', 'синь1']
3、pypinyin.slug
功能:将汉字转换为拼音,然后生成 slug 字符串,简单说就是自定义分隔符
语法:pypinyin.slug(hans , style=Style, heteronym=False, separator='-', errors='default', strict=True)
import pypinyin
from pypinyin import Style
pypinyin.slug('我是中国人')
'wo-shi-zhong-guo-ren'
pypinyin.slug('我是中国人', separator=' ')
'wo shi zhong guo ren'
pypinyin.slug('中国人2020雄起', separator=' ')
#遇到数字等非汉字不注音'zhong guo ren 2020 xiong qi'
pypinyin.slug('中国人2020雄起', style=Style.FIRST_LETTER)
'z-g-r-2020-x-q'
pypinyin.slug('我是中国人', style=Style.CYRILLIC)
'во3-ши4-чжун1-го2-жэнь'
4、 pypinyin.load_single_dict
功能:载入用户自定义的单字拼音库
语法: pypinyin.load_single_dict(pinyin_dict, style='default')
参数:
5、 pypinyin.load_phrases_dict
功能:载入用户自定义的词语拼音库
语法: pypinyin.load_phrases_dict(phrases_dict, style='default')
参数:
五、一个案例
假如需要找出一个垃圾评价的相似样本,用汉语相似性远远小于拼音,这个时候,拼音就能发挥很大的优势。
当然转换成拼音后,把每个音节当一个词,进行深度学习,效果也是非常好的。
S1 = '加公众号:小优惠,领券,便宜购买'
S2 = '伽工仲号:小优惠,伶绻,便宜购买'
#汉语相似
simi_1 = len(set(S1).intersection(set(S2)))/len(set(S1).union(set(S2)))#相似不懂的可以看我前面集合的文章
simi_1
0.5
#转换成拼音后显示
S1 = lazy_pinyin(S1)
S2 = lazy_pinyin(S2)
simi_2 = len(set(S1).intersection(set(S2)))/len(set(S1).union(set(S2)))
simi_2
0.875
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12