
t检验中的t值和p值是什么关系_t检验和p值的关系
t检验中通过样本均值 总体均值 样本标准差 样本量 可以计算出一个t值,这个t值和p值有什么关系?
根据界值表又会查出一个数,这个数和t值比较,得出大小,判断是否接受原假设。感觉p值一直都没有什么作用?
解答:在进行t检验时,会计算出一个t值,而在选定显著性水平后,可以找到相比较的t值,两者可以比较,判断显著性。p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取5%的显著性水平,如果p值大于5%,就接受原假设,否则不接受原假设。这样不用计算t值,不用查表了。
准问:其实是不是可以理解成 就是按照自由度和0.05来查表看p值的范围。例如 自由度是34的话,t〈t 0.05,34,则表示P >0.05,按α=0.05水准,接受原假设H0。
可以这么理解么?
回答:可以这么理解,t值其实就相当于确定的了一个置信区间,在这个区间内,接受原假设,而p表示的是置信区间之外的那部分;在确定t值时置信区间已经确定了,p值也就确定了,p值作为一个标准,你可以选的是显著性水平,只要比较一下就可以。两者在本质上时一样的。
其他解答:你这样理解是有偏误的。p值是根据统计量值计算出来的,跟显著性水平是没有关系。只能说根据计算出来的p值来和显著性水平比较,当p值小于显著性水平是拒绝原假设。而不能说根据显著性水平确定p值的范围。简言之,p值是根据样本计算出来的,而显著性水平则是认为规定的
解答:同意你的观点,p value is usually based on sample, and it is a calculated value, but significant level is usually set by statisticians subjectively…
其他疑问:这样啊~
基础知识不好 其实我应该是压根都不知道p值是怎么算出来的 例如 通过样本均值 总体均值 样本标准差 计算出了 t=1.77,自由度=34,查t界值表可以获得一个对应值 2.032,那p值是根据2.032计算出来的么?还是其他的方法?
多谢啦~
解答:不对。你这个2.032是根据给定的显著性水平计算出来的吧。p值不依赖于这个,p值就是在给定的自由度下(注意这里不要求显著性水平),通过计算出来的统计量值t=1.77,结合t分布求出当T>1.77是的概率 ,这个概率就是p值,如果是双侧检验的话还要乘以2
当显著性水平为0.05,自由度为34的时候,查t界值表得到一个对应数据2.032。这个值的意义主要是什么呢?数据分析培训
p值能直接跟显著性水平比较;而t值想要跟显著性水平比较,就得换算成p值,或者将显著性水平换算成t值。就是这么简单粗暴
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21