京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“每天一个数据分析师”第16期内容奉上,请享用
原创内容 转载请注明来源
人物档案
王润烨,学统计出身,大学期间接触到数据分析,并参与实施了一些项目,结识了许多从事数据分析和挖掘的朋友。环境使然,他自己也成了数据分析师,目前就职于杭州追灿数据。
DA:请您介绍一下自己的工作经历,目前的工作职责,工作中曾做过的数据分析实例,以及您的职业规划?
王润烨:追灿的团队专注于通过大数据挖掘创造价值,积累了多年的数据分析与数据挖掘经验,团队的积累给了我一剂强力助推剂,让我快速的成长。刚开始我专注做电商的精准营销、关联销售、客户价值等业务方面的数据支持,冲在业务一线让我学会如何将业务需求与专业技能结合。
现在,我主要从事具体业务需求的数据建模工作。目前,追灿数据应用领域从电商拓展到智慧城市、智慧农业、智慧工业等,我希望自己能深入进行这些领域的数据工作,让数据应用最终惠及每个人的生活。
DA:能否给我们讲讲您在工作中遇到的印象深刻的困难及其背景成因?
王润烨:我们团队在为某传统蜂蜜品牌做电商分销渠道分析时发现,电商平台上蜂蜜产品非常多,低端市场难以快速打开局面,高端市场又被进口品牌抢占,可以说电商蜂蜜市场竞争十分激烈。如果以直接销售的形式进入市场难以达到理想目标。
DA:如何解决这个问题呢?能否请您向广大同行分享下思路?
王润烨:我们转变了思路,转而去做相关行业的分析挖掘,大家都知道啤酒尿布案例吧,我们也是这么干的,使用了FP-growth算法来进行关联分析。
我们获取了淘宝全网数据,找出了客户同时购买蜂蜜和其他产品的交易数据,并依此建立了事务数据库。依据设定的最小支持度阈值,我们根据以下思路进行分析。
1.频繁项集产生:其目标是发现满足最小支持度阈值的所有项集,这些项集称作频繁项集。
2.规则的产生:其目标是从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则。
具体步骤为可分为:
a.扫描一遍数据库,获取所有频繁项,删除频率小于最小支持度的项。在此操作的过程中,还可以得到每个项的出现频率,供后续步骤使用。
b.第二次扫描数据库,在第一次处理完成的结果基础上,构建 FP-Tree。
c.得到了 FP-Tree 树之后,再遍历整棵树获取满足一定置信度的关联规则。
经过分析发现购买蜂蜜的客户同时购买滋补营养品、美容护肤、零食、保健品、个人护理等高达 70 多个类目的产品。也就是说, 这 70 多个类目的客户都是蜂蜜产品的潜在消费者。
其中茶饮类目关联最强,而在茶饮类目中,花茶在功效上与蜂蜜最搭。找到花茶类目之后,我们再分析了一下客群的消费习惯,大概都是消费能力和消费观念都很前的年轻人。有了这些数据支撑,我们再对产品进行价格和包装定位,卖花草茶的分销商在一个月销量就排在蜂蜜销售页面前列了,这也大大带动了旗舰店的流量提升。
DA:您可否推荐一些平时充电学习专业知识的平台或途径?
王润烨:经管之家,我也经常会进去逛,里面有许多很专业的人,而且里面的人都很活跃,大家也非常热心,有许多分享和心得。如果你想充电,这是个不二选择。
https://www.coursera.org/,免费的公开在线课程项目,与全世界最顶尖的大学和机构合作,提供任何人可学习的课程。如果你的英文还不错,可以进去瞧瞧。
其实国内也有一些不错的公开课,比如网易公开课和腾讯课堂。
DA:您对希望从事数据分析行业的人有哪些建议?
王润烨:一个数据分析师,最重要的不是他的技术,而是他的思考方式。
数据分析师相对数据,其实统计知识的要求没有很高,在数据分析层面上,大多只是做一些描述性的分析,也许会用到一些统计模型,但也只要求知道一些基本的概率论与数理统计方面的知识。数据分析师在做数据分析时,最重要的还是具有业务上的眼光。当然,除了商业嗅觉之外,你也要有优秀的学习能力。现在是大数据的时代,大数据人才的要求可是非常严格的,不仅需要有深厚的统计知识,还需要强大的技术能力,你要能玩转主流的大数据分析工具。你以为这样就足够了,你还必须要有良好的沟通合作能力,一个人的能力毕竟有限,团队的力量远远比个人强得多。因此,对于一个从事数据分析行业的人来说
1.不要脱离业务实际,架空的分析是没有用的
2.整理好数据非常重要,好的数据只用简单的算法也能得到很好的效果
3.思维一定要清晰,最好做个流程图
4.选择算法时要比较,不要有先入为主的概念
5.要多和共事的同事交流,能学到不少东西
6.多学习掌握一些数据分析的工具
7.活到老,学到老,技术发展的太快,不要盲目自信
DA:您如何看待数据分析师行业的就业前景及未来发展?
王润烨:很庆幸,大数据正迎来黄金时代。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。目前随着各行各业的不断发展,数据分析行业涉及的领域正由最初的投融资项目分析转向为企业经营、电商产业、游戏等服务。照此发展,相信不远的将来,中国的数据分析行业一定也会发展到行业精细化的程度。数据分析师或将成为职场新宠。
王润烨留下了自己的邮箱:wangrunye@e-corp.cn,您可以与他沟通,或者在微信直接提问。
想要接受访问的小伙伴可以发送邮件至songpeiyang@cda.cn,“姓名+单位+职务”,或者微信添加CDA为好友(ID:joinlearn),拉你如500人数据分析师交流群,期待你来~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01