 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		一、问题与数据
为调查A、B、C三种治疗措施对患者谷丙转氨酶(ALT)的影响,某科室将45名患者随机分为三组,每组15人,分别采取A、B、C三种治疗措施。治疗后ALT水平(U/L)如下。试问应用三种治疗措施后,患者的ALT水平是否有差异?
表1. 三组患者治疗后的ALT水平(U/L)
	 
 
二、对数据结构的分析
整个数据资料涉及3组患者,每组15人,测量指标为血常规报告的ALT水平,因此属于多组设计的定量资料。
要想知道不同治疗措施对ALT水平的影响是否相同,则要比较3组的总体均数之间的差异是否具有统计学意义。若各组观察值满足独立性,服从正态分布或近似正态分布,并且各组之间的方差齐,可选用单因素方差分析。
三、SPSS分析方法
1. 数据录入SPSS(1=A组,2=B组,3=C组)
	 
 
2. 选择Analyze→General Linear Model→Univariate (假设三组数据服从正态分布)
	 
 
	
3. 选项设置
1)主对话框设置:将分析变量(ALT)送入Dependent Variable 框中→将分组变量(Group)送入Fixed Factor(s) 框中。
	 
 
	
2) Options设置:点击Options按钮,勾选Descriptive statistics(显示统计描述)和Homogeneity tests(方差齐性检验)→Continue→OK。
	 
 
四、结果解读
	 
 
Descriptive Statistics表格给出了三组和总体ALT水平的部分统计信息,包括组别(Group)、均数(Mean)、标准差(Std. Deviation)和例数(N)。
	 
 
	
Levene’s Test of Equality of Error Variances表格给出了方差齐性检验的结果。F值=0.791,P(Sig.)=0.460,说明三组数据方差齐,满足方差分析的适用条件。
	 
 
	
Tests of Between-Subjects Effects表格给出了方差分析的结果。其中,Corrected Total一行表示总变异,Group一行表示组间变异,Error一行表示组内变异,Type Ⅲ Sum of Squares表示离均差平方和,Mean Square表示均方。方差分析的结果主要看Group一行,F值=68.810,P(Sig.)<0.001。
五、撰写结论
A组患者ALT水平为(13.28 ± 4.39)U/L,B组患者ALT水平为(28.44 ± 3.65)U/L,C组患者ALT水平为(12.15 ± 4.64)U/L。A、B、C三种治疗措施对患者ALT水平的影响差异具有统计学意义(F=68.810,P<0.001)。
六、延伸阅读
1. 单因素方差分析也可以通过Analyze→Compare Means→One-Way ANOVA进行,将ALT送入Dependent List框中,将Group送入Factor框中,其结果与本例的操作是一样的,感兴趣的亲可以自己动手试一下!
2. 单因素方差分析适用于只有一个处理因素的完全随机设计,处理因素可以有2个及以上的处理水平,观察指标为连续变量。适用条件包括:
1)观测指标满足独立性;
2)各组观测指标均来自正态分布总体;
3)各组观测指标方差相等。
在实际中由于方差分析具有稳健性,因此对正态性的条件要求不是很严格,但是对方差齐的要求比较严格。
3. 本例只是得出了3组总体均数之间差异具有统计学意义,并不意味着任意2组之间的均数差异都具有统计学意义。要想进一步了解哪两个组间的ALT水平存在差异,还需要进一步做样本均数之间的多重比较。SPSS统计软件提供了很多种用于两两比较的方法,包括Bonferroni法、S-N-K法、Tukey法等。之所以有这么多种方法,是因为目前还没有一种在任何条件下都适用、而且效果好的方法,这些方法都是从不同角度上控制多重比较时I型错误的发生概率。
	
来CDA学业务数据分析师,SPSS理论结合实战进行项目数据分析,助你成为从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,点击了解课程详情!
	
	
	 
		数据分析师一定要了解的大厂入门券,CDA数据分析师认证证书!
	 
		 
		 
		CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
	 
		 
		同时,CDA全栈考试布局和认证体系已得到教育部直属中国成人教育协会及大数据专业委员会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
	 
		 
		报名方式
	 
		登录CDA认证考试官网注册报名>>点击报名
	 
		 
		
	 
		报名费用
	 
		Level Ⅰ:1200 RMB
	 
		Level Ⅱ:1700 RMB
	 
		Level Ⅲ:2000 RMB
	 
		 
		考试地点
	 
		Level Ⅰ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试 >看看我所在的地哪里报名<
	 
		Level Ⅱ+Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州>看看我所在的地哪里报名<
	 
		 
		报考条件
	 
		 
		业务数据分析师 CDA Level I >了解更多<
	 
		▷ 报考条件:无要求。
	 
		▷ 考试时间:随报随考。
	 
		 
		建模分析师 CDA Level II >了解更多<
	 
		▷ 报考条件(满足任一即可):
	 
		1、获得CDA Level Ⅰ认证证书;
	 
		2、本科及以上学历,需从事数据分析相关工作1年以上;
	 
		3、本科以下学历,需从事数据分析相关工作2年以上。
	 
		▷ 考试时间:
	 
		一年四届 3月、6月、9月、12月的最后一个周六。
	 
		 
		▷ 报考条件(满足任一即可):
	 
		1、获得CDA Level Ⅰ认证证书;
	 
		2、本科及以上学历,需从事数据分析相关工作1年以上;
	 
		3、本科以下学历,需从事数据分析相关工作2年以上。
	 
		▷ 考试时间:
	 
		一年四届 3月、6月、9月、12月的最后一个周六。
	 
		 
		数据科学家  CDA Level III >了解更多<
	 
		▷ 报考条件(满足任一即可):
	 
		1、获得CDA Level Ⅱ认证证书;
	 
		2、本科及以上学历,需从事数据分析相关工作3年以上;
	 
		3、本科以下学历,需从事数据分析相关工作4年以上。
	 
		▷ 考试时间:
	 
		一年四届 3月、6月、9月、12月的最后一个周六。
	 
		(备注:数据分析相关工作不限行业,可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
	 
		 
		——热门课程推荐:
	 
		想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
	 
		想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
	 
		想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
	 
		想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
	 
		想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
	 
		想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情; 
	
	
	
	
	
	
	
	
	
	
	
	
	
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23