
CDA数据分析师认证考试(第四届)将于2016年6月25-26日进行。届时考试共有两个等级,分别为:
CDA LEVEL Ⅰ ,CDA LEVEL Ⅱ .
官方考纲下载:
------------------------------------------------------------------------------------------------------------------------------------------
一、行业背景:
这是一个用数据说话的时代,也是一个依靠数据竞争的时代。麦肯锡公司的研究预测称,到2018年,在“具有深入分析能力的人才”方面,美国可能面临着14万到19万的缺口,而“可以利用大数据分析来做出有效决策的经理和分析师” 缺口则会达到150万。数据科学家将成为2016年最热门的职业。
作为一个数学和统计学的强国,数据分析、数据挖掘和大数据价值挖掘在我国仍属于朝阳行业,数据分析人才仍然比较稀缺。数据积累越来越多,期待解决分析的数据问题也越来越多,人们逐渐习惯的使用数据作为决策的重要参考依据。据艾瑞的研究报告,未来与数据分析相关的就业岗位会在1000万左右,而目前来说国内的合格的数据分析师不足5万,建立一个科学有效的数据分析师培训体系迫在眉睫。
在这样一个以数据驱动的时代,在社会缺少专业系统的人才培养与认证机制的时代,CDA数据分析师应运而生于2013-2014年度推出CDA数据分析师LEVELⅠⅡⅢ资格标准,并根据标准制定了规范的人才培养与考试认证机制。
二、考试简介:
CDA(Certified Data Analyst),简称“CDA数据分析师”,指在互联网、零售、金融、电信、医学、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。CDA旨在加强国内外乃至全球范围内正规化、科学化、专业化的数据分析人才建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。由于国内缺乏数据分析师考核认证标准,以丰厚的积淀,整合资源,汇聚国内外学术界、实务界顶级数据分析师团队举办“CDA数据分析师认证考试“,为企业、政府等单位培养优秀的数据分析人才。CDA数据分析师等级标准来源于长年从事数据分析教育与工作的经验和实践,对数据分析行业的研究,对数据分析教育的不断完善开发,从而总结出来的一套专业化,科学化,规范化,系统化的标准来认证什么样的人才才是合格的CDA数据分析师。
三、考试科目
CDA Level I 包含以下科目:《职业道德与操守》、《数据库与 SQL 基础》、《统计学(初级)》、《业务数据分析》、《数据可视化》
CDA Level II 包含以下科目:《数据采集与数据处理》、《统计分析》、《商业策略分析》、《数据治理》
CDA Level III 包含以下科目:《数据挖掘与高级数据处理》、《自然语言处理与文本分析》、《算法应用与实战》
四、CDA报考条件:
Level Ⅰ:无要求,皆可报考
Level Ⅱ:获得CDA Level Ⅰ认证
Level III:获得CDA Level II 认证
五、报名办法
(1)在CDA官方唯一考试系统进行报名:http://exam.cda.cn/
(2)报名流程:
在线注册登录——提交资料——报考科目——完成缴费——审核通过——报名成功
六、考试形式
Level Ⅰ:客观题(单选+多选),上机答题
Level Ⅱ:客观题(单选+多选),上机答题
Level III : 客观+案例分析(选择+案例操作)
参考书目请见考试大纲及解析。
考试最终成绩分为A,B,C,D不及格四个层次,A,B,C三个层次皆为通过考试并获得认证证书。
七、官方考试最新安排:
CDA LEVEL Ⅰ:2016年6月25日(下午)
CDA LEVEL Ⅱ:2016年6月26日(上午)
中国内地30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州。
考试费用:
CDA LEVEL Ⅰ: 1200元
CDA LEVEL Ⅱ: 1700元
截止时间:2016年6月7日
在线报名地址:http://exam.cda.cn/
八、持证人福利:
1. 可吸纳为中国数据分析师(CDA)俱乐部会员,活动中具有优先报名参与权;
2. 免费参与中国数据分析师行业峰会、大数据峰会、研讨会等活动,并享受特权位置;
3. 可申请加入数据处理与分析中心,参与项目合作(提供项目给持证人演练);
4. 持证人的资源分享平台;
6. 其他特权,以各类活动公告为主。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28